Just printed. Just 9,6 Mohs.
Create design in diamond-like hardness
In the past shapes were defined by manufacturing processes ... now it depends on your imagination.

IntrinSiC® is the superior innovation for the production of large, complex, monolithic constructional elements made from silicon-infiltrated, reaction-bonded silicon carbide (RBSiC). Based on this innovation it became feasible for the first time to provide large parts with a certain complexity efficiently by 3-D-printing accompanied by a diamond-like hardness.

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® is the superior innovation for the production of large, complex, monolithic constructional elements made from silicon-infiltrated, reaction-bonded silicon carbide (RBSiC). Based on this innovation it became feasible for the first time to provide large parts with a certain complexity efficiently by 3-D-printing accompanied by a diamond-like hardness.

From Prototype to Volume Production

IntrinSiC® combines excellent material properties of RBSiC with process-related advantages of the 3-D-printing, providing a new dimension of constructive design potentials – i.e. in the market segments of lithography, metrology and thermal process technology.

Even large and complex monolithic structures with undercuts and cavities are feasible to be formed in just one single manufacturing step. Besides, a high degree of surface finish can be achieved by grinding, polishing and lapping.

Upon customer request we may moreover realize a reverse engineering of existing parts using tactile or non-tactile measuring methods (i.e. laser-scanning) for data evaluating and digitizing.

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

In the past shapes were defined by manufacturing processes ... now it depends on your imagination.

IntrinSiC® is the superior innovation for the production of large, complex, monolithic constructional elements made from silicon-infiltrated, reaction-bonded silicon carbide (RBSiC). Based on this innovation it became feasible for the first time to provide large parts with a certain complexity efficiently by 3-D-printing accompanied by a diamond-like hardness.

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces

IntrinSiC® combines the following process and material advantages:

Process advantages of 3-D-printing:
- Realizing of undercuts and/or cavities
- No time-consuming manufacturing from patterns and moulds (CAD-data means parts ready for manufacturing immediately)
- High degree of process-flexibility
- Fast production lead times
- Design modification by the click of a mouse
- No time-consuming retooling of moulds
- Digitizing from existing parts by Reverse Engineering

Material advantages of RBSiC:
- High temperature resistance
- Low mass
- Low thermal expansion
- Very high stiffness, bending strength and hardness
- High degree of size accuracy
- Excellent corrosion and oxidation resistance
- High thermal conductivity
- Direct polishable surfaces
The Schunk Group is an internationally operating technology company. It offers a broad spectrum of products and services in the fields of carbon technology and ceramics, environment simulation and air conditioning technology, sintered metal and ultrasonic welding. The Schunk Group has bundled its expertise in the development, manufacture and application of carbon and ceramic solutions in the Schunk Carbon Technology Division.